PHYS 798C Fall 2025
Lecture 11 Summary

Prof. Steven Anlage

I. FINITE TEMPERATURE BCS
A. Meanwhile, Back at the Hamiltonian

Last time, we found that with the substitution of the transformed operators, the model Hamiltonian
becomes,
Hpr—pNop = Y, (nice terms involving diagonal operators) 4+ (undesired cross terms) (2§kukvk + A,”;v% — Akuz)
We can eliminate all of the ugly terms in the transformed Hamiltonian by making a second constraint
on the u’s and v’s, namely to make the bracket term in the model Hamiltonian equal to zero. That leads
to a quadratic equation for the quantity Ajvy/ui whose solution yields Ajvy/up = Ej — &, which is
real. Here again we have Ej, = /A7 + £2. If we take the convention that uy is real (as in the previous
calculation), then it must be that vx and A have the same phase. This phase factor is the same for all
k and endows the energy gap with the macroscopic quantum phase factor in the superconducting state.
With the two constraints on the u’s and v’s, we can now solve for them in terms of known quantities,
and the result is
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exactly as before in the zero temperature variational calculation!

The resulting diagonalized Hamiltonian is,
Hyr — pNop = 305 (&6 — Ex + Akb;) + 35 Ex (3o 7m0 + Vi ve1)-
The first sum reproduces the ground state BCS energy. The second sum represents excitations out of
the ground state. It counts excitations of energy FEj, through the v+ number operators.
These excitations are gapped by A, and as such are very rarely created at low temperatures when
kT << A. Note that there is a gap in the energy spectrum of these excitations, but no gap in the
momentum. The excitations are called Bogoliubons or quasi-particles. As discussed in the last
lecture, these quasiparticles are different linear combinations of electrons and holes, depending on where
you are inside or outside the Fermi surface, i.e. as a function of k.

B. Finite-Temperature Self-Consistent Gap Equation

Now enforce the self-consistency condition on the by operators through the energy gap, A =

— > Vb with by = (c_; ¢ 1+). Expressing the c-operators in terms of the v operators eventually
yields,
Ay == Viauiv (1 =m0 — 71+1’Yl12-
By inspection it seems clear that the v~ number operators now serve to decrease the expectation value
on the right-hand side of the equation, resulting in a diminished energy gap as more and more excitations
are created out of the BCS ground state.

We can set up a finite-temperature version of the self-consistent gap equation as follows. First, propose
that the excitations are created at finite temperature by an amount dictated by Fermi-Dirac statistics
since we know that the - operators are Fermionic in nature. (Here we see the seeds of the two-fluid
model of superconducting electrons described by a ground state wavefunction co-existing with a “normal
fluid”.) Namely the number operator expectation values are replace by the Fermi function for the
quasiparticle excitation at energy E;: f(E)) = eﬂTllH with g = 1/kgT, which introduces the notion of
temperature 7. This results in a factor of 1 — 2f(E;) = tanh(8E;/2).

The u;v; factor can be written as AL The resulting finite-temperature self-consistent gap equation is,

2E;°
Ap = — Zl Vk,l% tanh(ﬂEl/2).


https://www.physics.umd.edu/courses/Phys798C/AnlageFall25/Quasiparticle Excitation Spectrum.pdf

To proceed, once again put in the Cooper pairing potential as,
Viey = -V |§k|7|€l|<mc

’ 0 |éx|and/or |&] > hw,
with V' a positive number. Again it leads to an isotropic gap, which can be canceled in the numerator,
yielding

1/V _ +% E[Restricted tanh(glEl/Q)

Converting from a sum on [ to an integral on energy brings in the density of states D(E) (which we
assume is approximately constant over the range of the energy integral) and allows us to write:
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This is the finite-temperature self-consistent gap equation.

At zero temperature the argument of the tanh is infinity, yielding 1 in the numerator, and the zero-
temperature gap result is recovered:

A(T=0)=

hw,
sinh(1/D(Er)V) "

Now examine the limit as T' — T.. We expect the gap to decrease continuously to zero, it’s value
in the normal state. However, a large fraction of the electrons in the metal will be quasi-particles, and
their interactions are not included in the Hamiltonian. Nevertheless we proceed. At T, we expect,
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kpT, ~ 1.13hw.e Y/ PERV 4 result similar to that for the zero-temperature gap. In fact BCS predicts
that in the weak coupling limit (D(Er)V << 1) there is a universal result for the “reduced gap”,
A(0)/kpT. = 2/1.13 = 1.76. Data on elemental superconductors show values in this ballpark, or higher.
The oft-quoted value 2A(0)/kpT,. = 3.528 essentially defines the “weak coupling BCS limit” for many

researchers.

d¢ This integral can be done with some effort and yields an expression for T,

By the way, the result that T, ~ w. motivated the study of the “isotope effect” on T, discussed earlier

in the course (i.e. T.M* = constant, with a = 0.5, where M is the average ionic mass in the metal).
Another important ramification of this result is the generic fact that the zero-temperature gap is expected
to scale with the T, of the superconductor: A(0)  T.
Finally, it should be noted that a d-wave superconductor (e.g. cuprate superconductors) has a weak-
coupling approximation value of 2A(0)/kpT,. = 4.28, see the class web site, where A(0) is the maximum
of the E—dependent d-wave gap on the Fermi surface. Cuprate superconductors have line nodes of their
anisotropic energy gap Aj: on the Fermi surface.

C. Temperature Dependent Gap

Numerical solution of the finite-temperature self-consistent gap equation (Eq. 1) for A(T) is in very
good agreement with data obtained by tunneling spectroscopy on weak coupled elemental superconduc-
tors, as shown in the Supplementary Material on the class web site.

The gap has two interesting asymptotic temperature dependencies:

1. Low Temperatures

For T < T../3 one has A(T) = A(0) (1 — e=2)/k5T) In other words the gap remains very close to it’s
zero temperature value, dropping only slightly by a thermally-activated amount. This is an important
“smoking gun” signature of a fully-gapped superconductor. There exist superconductors with point or
line nodes of the energy gap on the Fermi surface, and these superconductors have properties that are
power-law in temperature, rather than activated, at the lowest temperatures. Example properties include
the magnetic penetration depth and thermal conductivity. These ‘nodal’ superconductors typically have
Cooper pairs in higher orbital angular momentum states, such as £ = 1 (p-wave) and ¢ = 2 (d-wave).


https://www.physics.umd.edu/courses/Phys798C/AnlageFall25/Lecture11VG.pdf
https://www.physics.umd.edu/courses/Phys798C/AnlageFall25/PhysRevB.53.3598.pdf
https://www.physics.umd.edu/courses/Phys798C/AnlageFall25/Lecture11VG.pdf

2. Near T,

1/2
For T — T, one has A(T) =~ 1.74 A(0) (1 — T1> . The superconducting gap goes to zero continu-

ously at T, characteristic of a second-order phase transition. This exponent of 1/2 is typical of ‘mean
field’ critical behavior for the order parameter in 3D, and is the same as the mean-field treatment of the
ferromagnetic-paramagnetic phase transition. Note that the slope of A(T) is infinite at T.

D. Thermodynamic Quantities

This simple model Hamiltonian also allows study of the finite-temperature thermodynamic properties
of an ideal BCS superconductor. One can calculate the electronic entropy, heat capacity, and free energy
vs. temperature. We ignore the lattice contributions.

The BCS ground state is a ’superfluid’ in the sense that it cannot carry entropy. The electronic
entropy comes entirely from the quasiparticles excited out of the ground state. The electronic entropy
for any Fermi gas is given by,

S. = —2kp 3, [(1— F(E) In(1 = F(EW) + F(EQ) n(f(E))].

For a normal metal this becomes,

Sen =T, where v = %7‘[‘2D(EF)I€QB, and the entropy is just linear in temperature. For a superconductor
the situation changes because of the gap in the excitation spectrum, leading to fewer quasiparticle
excitations and lower entropy than the normal state at all temperatures below T,. In fact the electronic
entropy is exponentially small for T' < T,/3 due to the limited number of quasiparticle excitations out
of the ground state.

The electronic heat capacity is given by C, = T“fgf. Once again this is a linear function of tempera-
ture for a normal metal, C,,, = 4T. For a superconductor the electronic heat capacity is exponentially
small at low temperatures T' < T./3, and enhanced above the normal state value just below T.. The
superconducting electronic specific heat can be written as,

Ces = 2pkp Zk _%EE:) |:EI% + %5(1@2],
where § = 1/kgT. The first term in square brackets is common to all Fermi gases. The second term is
unique to superconductors and arises from the re-arrangement of states associated with the temperature-
dependent gap. At T, this term gives rise to a discontinuous jump in electronic heat capacity because
the singular slope of A(T) there. BCS theory predicts a “universal specific heat jump” at T, in the
weak-coupling approximation, given by,

89 = D(Er) (~457) /Cun

Using the weak-coupling expression for the gap near 7., and the universal reduced gap value, one finds,

AC _
AC —1.43.

This is found to be in very good agreement with measured results (see the Thermodynamics of Super-
conductors slides) on weak-coupled elemental BCS superconductors. The discontinuity of the electronic
heat capacity at T, is a direct manifestation of the opening of a gap in the excitation spectrum, and
serves as definitive evidence for superconductivity.

Measurement of the universal specific heat jump is considered a hallmark of “bulk” superconductivity.
In higher-T, superconductors it becomes a challenge to measure AC/Ce,, because of very large lattice
contributions (which must be removed to compare to BCS predictions for the electronic heat capacity)
and the difficulty in determining the normal state electronic heat capacity (because the critical magnetic
fields required to destroy superconductivity are often beyond our ability to generate).

The free energy of the superconductor is lower than that of the normal metal state as shown on
the class web site Supplemental Material. This difference in free energy is known as the ’condensation
energy.” This free energy difference, and it’s variation in space and time inside the superconductor, will
be the focus of Ginzburg-Landau theory.
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